Search results
Results from the WOW.Com Content Network
A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.
In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] A neural network consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain ...
Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...
In non-neural-network-based image processing. In digital image processing convolutional filtering plays an important role in many important algorithms in edge detection and related processes (see Kernel (image processing)) In optics, an out-of-focus photograph is a convolution of the sharp image with a lens function.
The graph convolutional network (GCN) was first introduced by Thomas Kipf and Max Welling in 2017. [9] A GCN layer defines a first-order approximation of a localized spectral filter on graphs. GCNs can be understood as a generalization of convolutional neural networks to graph-structured data. The formal expression of a GCN layer reads as follows:
AlexNet is a convolutional neural network (CNN) architecture, designed by Alex Krizhevsky in collaboration with Ilya Sutskever and Geoffrey Hinton, who was Krizhevsky's Ph.D. advisor at the University of Toronto in 2012.
LeNet is a series of convolutional neural network architectures created by a research group in AT&T Bell Laboratories during the 1988 to 1998 period, centered around Yann LeCun. They were designed for reading small grayscale images of handwritten digits and letters, and were used in ATM for reading cheques .