enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Learning to rank - Wikipedia

    en.wikipedia.org/wiki/Learning_to_rank

    Learning to rank [1] or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. [2] Training data may, for example, consist of lists of items with some partial order specified between items in ...

  3. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems (via learning to rank). The ranking SVM algorithm was published by Thorsten Joachims in 2002. [1] The original purpose of the algorithm was to improve the performance of an internet search engine.

  4. EdgeRank - Wikipedia

    en.wikipedia.org/wiki/EdgeRank

    EdgeRank is the name commonly given to the algorithm that Facebook uses to determine what articles should be displayed in a user's News Feed.As of 2011, Facebook has stopped using the EdgeRank system and uses a machine learning algorithm that, as of 2013, takes more than 100,000 factors into account.

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  6. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...

  7. RankBrain - Wikipedia

    en.wikipedia.org/wiki/RankBrain

    RankBrain is a machine learning-based search engine algorithm, the use of which was confirmed by Google on 26 October 2015. [1] It helps Google to process search results and provide more relevant search results for users. [2]

  8. Preference learning - Wikipedia

    en.wikipedia.org/wiki/Preference_learning

    Preference learning can be used in ranking search results according to feedback of user preference. Given a query and a set of documents, a learning model is used to find the ranking of documents corresponding to the relevance with this query. More discussions on research in this field can be found in Tie-Yan Liu's survey paper. [6]

  9. Similarity learning - Wikipedia

    en.wikipedia.org/wiki/Similarity_learning

    Similarity learning is closely related to distance metric learning. Metric learning is the task of learning a distance function over objects. A metric or distance function has to obey four axioms: non-negativity, identity of indiscernibles, symmetry and subadditivity (or the triangle inequality). In practice, metric learning algorithms ignore ...