enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wavelet transform - Wikipedia

    en.wikipedia.org/wiki/Wavelet_transform

    Wavelets have some slight benefits over Fourier transforms in reducing computations when examining specific frequencies. However, they are rarely more sensitive, and indeed, the common Morlet wavelet is mathematically identical to a short-time Fourier transform using a Gaussian window function. [ 13 ]

  3. Wavelet - Wikipedia

    en.wikipedia.org/wiki/Wavelet

    The wavelets forming a continuous wavelet transform (CWT) are subject to the uncertainty principle of Fourier analysis respective sampling theory: [4] given a signal with some event in it, one cannot assign simultaneously an exact time and frequency response scale to that event. The product of the uncertainties of time and frequency response ...

  4. Morlet wavelet - Wikipedia

    en.wikipedia.org/wiki/Morlet_wavelet

    The Morlet wavelet transform is used in pitch estimation and can produce more accurate results than Fourier transform techniques. [10] The Morlet wavelet transform is capable of capturing short bursts of repeating and alternating music notes with a clear start and end time for each note.

  5. Discrete wavelet transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_wavelet_transform

    In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time).

  6. Haar wavelet - Wikipedia

    en.wikipedia.org/wiki/Haar_wavelet

    The Haar wavelet. In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the ...

  7. Gabor wavelet - Wikipedia

    en.wikipedia.org/wiki/Gabor_wavelet

    The equation of a 1-D Gabor wavelet is a Gaussian modulated by a complex exponential, described as follows: [3] = / ()As opposed to other functions commonly used as bases in Fourier Transforms such as and , Gabor wavelets have the property that they are localized, meaning that as the distance from the center increases, the value of the function becomes exponentially suppressed.

  8. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    An example application of the Fourier transform is determining the constituent pitches in a musical waveform.This image is the result of applying a constant-Q transform (a Fourier-related transform) to the waveform of a C major piano chord.

  9. Shannon wavelet - Wikipedia

    en.wikipedia.org/wiki/Shannon_wavelet

    In functional analysis, the Shannon wavelet (or sinc wavelets) is a decomposition that is defined by signal analysis by ideal bandpass filters. Shannon wavelet may be either of real or complex type. Shannon wavelet is not well-localized (noncompact) in the time domain, but its Fourier transform is band-limited (compact support).