Search results
Results from the WOW.Com Content Network
Electron-withdrawing groups exert an "inductive" or "electron-pulling" effect on covalent bonds. The strength of the electron-withdrawing group is inversely proportional to the pKa of the carboxylic acid. [2] The inductive effect is cumulative: trichloroacetic acid is 1000x stronger than chloroacetic acid.
With respect to acidity, a common trend to note is that, inductively, an electron-withdrawing substituent in the vicinity of an acidic proton will lower the pKa (i.e. increase the acidity) and, correspondingly, an electron-donating substituent will raise the pKa. [7] The reorganization of charge due to field effects will have the same result.
If the electronegative atom (missing an electron, thus having a positive charge) is then joined to a chain of atoms, typically carbon, the positive charge is relayed to the other atoms in the chain. This is the electron-withdrawing inductive effect, also known as the -I effect. In short, alkyl groups tend to donate electrons, leading to the +I ...
The electron-withdrawing effect of the substituent makes ionisation easier, so successive pK a values decrease in the series 4.7, 2.8, 1.4, and 0.7 when 0, 1, 2, or 3 chlorine atoms are present. [49] The Hammett equation , provides a general expression for the effect of substituents.
For meta-directing groups (electron withdrawing group or EWG), σ meta and σ para are more positive than σ’. (The superscript, c, in table denotes data from Hammett, 1940. [11] [page needed]) For ortho-para directing groups (electron donating group or EDG), σ’ more positive than σ meta and σ para.
Triflidic acid, with three strongly electron-withdrawing triflyl groups, has an estimated pK a well below −10. On the other end of the scale, hydrocarbons bearing only alkyl groups are thought to have pK a values in the range of 55 to 65. The range of acid dissociation constants for carbon acids thus spans over 70 orders of magnitude.
Take a trip down memory lane with by looking at these incredible photos of Christmas window displays from the last 100 years,
The captodative effect is the stabilization of radicals by a synergistic effect of an electron-withdrawing substituent and an electron-donating substituent. [2] [3] The name originates as the electron-withdrawing group (EWG) is sometimes called the "captor" group, whilst the electron-donating group (EDG) is the "dative" substituent. [3]