Search results
Results from the WOW.Com Content Network
The weak interaction has a very short effective range (around 10 −17 to 10 −16 m (0.01 to 0.1 fm)). [b] [14] [13] At distances around 10 −18 meters (0.001 fm), the weak interaction has an intensity of a similar magnitude to the electromagnetic force, but this starts to decrease exponentially with increasing distance.
The Feynman diagrams are much easier to keep track of than "old-fashioned" terms, because the old-fashioned way treats the particle and antiparticle contributions as separate. Each Feynman diagram is the sum of exponentially many old-fashioned terms, because each internal line can separately represent either a particle or an antiparticle.
In the Stückelberg–Feynman interpretation, pair annihilation is the same process as pair production: Møller scattering: electron-electron scattering Bhabha scattering: electron-positron scattering Penguin diagram: a quark changes flavor via a W or Z loop Tadpole diagram: One loop diagram with one external leg Self-interaction or oyster diagram
The simplest Feynman diagram for beta decay. It contains a charged current interaction at each vertex. Charged current interactions are the most easily detected class of weak interactions. The weak force is best known for mediating nuclear decay. It has very short range, but is the only force (apart from gravity) to interact with neutrinos.
The Feynman diagram for beta decay of a neutron into a proton, electron, and electron antineutrino via an intermediate W − boson. The W and Z bosons are carrier particles that mediate the weak nuclear force, much as the photon is the carrier particle for the electromagnetic force.
A Feynman diagram (box diagram) for photon–photon scattering: one photon scatters from the transient vacuum charge fluctuations of the other. Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed.
Interactions in the Standard Model. All Feynman diagrams in the model are built from combinations of these vertices. q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle ...
The leading-order Feynman diagram for β + decay of a proton into a neutron, positron, and electron neutrino via an intermediate virtual W + boson. In β + decay, or positron emission, the weak interaction converts an atomic nucleus into a nucleus with atomic number decreased by one, while emitting a positron (e +) and an electron neutrino (ν ...