Search results
Results from the WOW.Com Content Network
In typed lambda calculus, functions can be applied only if they are capable of accepting the given input's "type" of data. Typed lambda calculi are strictly weaker than the untyped lambda calculus, which is the primary subject of this article, in the sense that typed lambda calculi can express less than the untyped calculus can. On the other ...
Air–fuel equivalence ratio, λ (lambda), is the ratio of actual AFR to stoichiometry for a given mixture. λ = 1.0 is at stoichiometry, rich mixtures λ < 1.0, and lean mixtures λ > 1.0. There is a direct relationship between λ and AFR. To calculate AFR from a given λ, multiply the measured λ by the
The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0
Failure rate is the frequency with which any system or component fails, expressed in failures per unit of time. It thus depends on the system conditions, time interval, and total number of systems under study. [1]
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
In calculation, the effects of r o are negligible, [1] so the equation is typically expressed as: λ = r m r i {\displaystyle \lambda ={\sqrt {\frac {r_{m}}{r_{i}}}}} The membrane resistance is a function of the number of open ion channels , and the axial resistance is generally a function of the diameter of the axon .
Consider a long, thin rod of mass and length .To calculate the average linear mass density, ¯, of this one dimensional object, we can simply divide the total mass, , by the total length, : ¯ = If we describe the rod as having a varying mass (one that varies as a function of position along the length of the rod, ), we can write: = Each infinitesimal unit of mass, , is equal to the product of ...