enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p 1, and a subsequent momentum is p 2, the object has received an impulse J: =. Momentum is a vector quantity, so impulse is also a vector quantity.

  3. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    Relative to the center of momentum frame, the momentum of each colliding body does not change magnitude after collision, but reverses its direction of movement. Comparing with classical mechanics , which gives accurate results dealing with macroscopic objects moving much slower than the speed of light , total momentum of the two colliding ...

  4. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    Since the partial derivative is a linear operator, the momentum operator is also linear, and because any wave function can be expressed as a superposition of other states, when this momentum operator acts on the entire superimposed wave, it yields the momentum eigenvalues for each plane wave component. These new components then superimpose to ...

  5. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.

  6. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  8. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    The energy and momentum of an object measured in two inertial frames in energy–momentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0.

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    When Newton's laws are applied to rotating extended bodies, they lead to new quantities that are analogous to those invoked in the original laws. The analogue of mass is the moment of inertia, the counterpart of momentum is angular momentum, and the counterpart of force is torque. Angular momentum is calculated with respect to a reference point ...