Search results
Results from the WOW.Com Content Network
Piezoelectric balance presented by Pierre Curie to Lord Kelvin, Hunterian Museum, Glasgow. Piezoelectricity [note 1] is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress.
The piezoelectric coefficient or piezoelectric modulus, usually written d 33, quantifies the volume change when a piezoelectric material is subject to an electric ...
Piezoelectric polymers (PVDF, 240 mV-m/N) possess higher piezoelectric stress constants (g 33), an important parameter in sensors, than ceramics (PZT, 11 mV-m/N), which show that they can be better sensors than ceramics. Moreover, piezoelectric polymeric sensors and actuators, due to their processing flexibility, can be readily manufactured ...
A piezoelectric disk generates a voltage when deformed (change in shape is greatly exaggerated) A piezoelectric sensor is a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. The prefix piezo-is Greek for 'press' or 'squeeze'. [1]
A crystal oscillator is an electronic oscillator circuit that uses a piezoelectric crystal as a frequency-selective element. [1] [2] [3] The oscillator frequency is often used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers.
The electromechanical coupling coefficient is a numerical measure of the conversion efficiency between electrical and acoustic energy in piezoelectric materials. Qualitatively the electromechanical coupling coefficient, k, can be described as:
Piezoelectric effect can occur only in compound semiconductor due to their polar nature. It is small in most semiconductors but may lead to local electric fields that cause scattering of carriers by deflecting them, this effect is important mainly at low temperatures where other scattering mechanisms are weak.
This asymmetric tuning of the Schottky barrier height is the piezotronic effect. Piezotronics effect is using the piezoelectric potential (piezopotential) created in materials with piezoelectricity as a “gate” voltage to tune/control the charge carrier transport properties for fabricating new devices.