enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radioactivity in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Radioactivity_in_the_life...

    Not all molecules in the solution have a P-32 on the last (i.e., gamma) phosphate: the "specific activity" gives the radioactivity concentration and depends on the radionuclei's half-life. If every molecule were labelled, the maximum theoretical specific activity is obtained that for P-32 is 9131 Ci/mmol.

  3. Radioactive tracer - Wikipedia

    en.wikipedia.org/wiki/Radioactive_tracer

    A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide (a radioactive atom). By virtue of its radioactive decay , it can be used to explore the mechanism of chemical reactions by tracing the path that the radioisotope follows from ...

  4. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.

  5. Radiometric dating - Wikipedia

    en.wikipedia.org/wiki/Radiometric_dating

    Carbon-14 is a radioactive isotope of carbon, with a half-life of 5,730 years [28] [29] (which is very short compared with the above isotopes), and decays into nitrogen. [30] In other radiometric dating methods, the heavy parent isotopes were produced by nucleosynthesis in supernovas, meaning that any parent isotope with a short half-life ...

  6. Technetium-99m - Wikipedia

    en.wikipedia.org/wiki/Technetium-99m

    99m Tc's half-life of 6.0058 hours is considerably longer (by 14 orders of magnitude, at least) than most nuclear isomers, though not unique. This is still a short half-life relative to many other known modes of radioactive decay and it is in the middle of the range of half lives for radiopharmaceuticals used for medical imaging.

  7. Commonly used gamma-emitting isotopes - Wikipedia

    en.wikipedia.org/wiki/Commonly_used_gamma...

    With a short half-life of 8 days, this radioisotope is not of practical use in radioactive sources in industrial radiography or sensing. However, since iodine is a component of biological molecules such as thyroid hormones, iodine-131 is of great importance in nuclear medicine, and in medical and biological research as a radioactive tracer.

  8. Environmental isotopes - Wikipedia

    en.wikipedia.org/wiki/Environmental_isotopes

    For example, 3 H is a radioactive isotope of hydrogen. It decays into 3 He with a half-life of ~12.3 years. By comparison, stable isotopes do not undergo radioactive decay, and their fixed proportions are measured against exponentially decaying proportions of radioactive

  9. Fluorine-18 - Wikipedia

    en.wikipedia.org/wiki/Fluorine-18

    Fluorine-18 (18 F, also called radiofluorine) is a fluorine radioisotope which is an important source of positrons. It has a mass of 18.0009380(6) u and its half-life is 109.771(20) minutes. It decays by positron emission 96.7% of the time and electron capture 3.3% of the time. Both modes of decay yield stable oxygen-18.