Ads
related to: resistors series and parallel connection
Search results
Results from the WOW.Com Content Network
Whether a two-terminal "object" is an electrical component (e.g. a resistor) or an electrical network (e.g. resistors in series) is a matter of perspective. This article will use "component" to refer to a two-terminal "object" that participates in the series/parallel networks.
For example, a 10 ohm resistor connected in parallel with a 5 ohm resistor and a 15 ohm resistor produces 1 / 1/10 + 1/5 + 1/15 ohms of resistance, or 30 / 11 = 2.727 ohms. A resistor network that is a combination of parallel and series connections can be broken up into smaller parts that are either one or the other.
A network with two components or branches has only two possible topologies: series and parallel. Figure 1.2. Series and parallel topologies with two branches. Even for these simplest of topologies, the circuit can be presented in varying ways. Figure 1.3. All these topologies are identical. Series topology is a general name.
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
Parallel RL circuit. When both the resistor and the inductor are connected in parallel connection and supplied through a voltage source, this is known as a RL parallel circuit. [2] The parallel RL circuit is generally of less interest than the series circuit unless fed by a current source.
However, the series resistors R M1 and R M2 are low Ohmic resistors (like in the photo) meant to pass current around the instruments M1 and M2, and function as shunt resistors to those instruments. R M1 and R M2 are connected in parallel with M1 and M2. If seen without the instruments these two resistors would be considered series resistors in ...
Ads
related to: resistors series and parallel connection