Search results
Results from the WOW.Com Content Network
Face detection is gaining the interest of marketers. A webcam can be integrated into a television and detect any face that walks by. The system then calculates the race, gender, and age range of the face. Once the information is collected, a series of advertisements can be played that is specific toward the detected race/gender/age.
Technologies typically considered as part of AIDC include QR codes, [1] bar codes, radio frequency identification (RFID), biometrics (like iris and facial recognition system), magnetic stripes, optical character recognition (OCR), smart cards, and voice recognition. AIDC is also commonly referred to as "Automatic Identification", "Auto-ID" and ...
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.
Finding facial landmarks is an important step in facial identification of people in an image. Facial landmarks can also be used to extract information about mood and intention of the person. [1] Methods used fall in to three categories: holistic methods, constrained local model methods, and regression-based methods. [2] Holistic methods are pre ...
Facial recognition software at a US airport Automatic ticket gate with face recognition system in Osaka Metro Morinomiya Station. A facial recognition system [1] is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces.
ISO/IEC 19794 Information technology—Biometric data interchange formats—Part 5: Face image data, or ISO/IEC 19794-5 for short, is the fifth of 8 parts of the ISO/IEC standard ISO/IEC 19794, published in 2005, which describes interchange formats for several types of biometric data.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]