Search results
Results from the WOW.Com Content Network
For example, residue i may form hydrogen bonds to residues j − 1 and j + 1; this is known as a wide pair of hydrogen bonds. By contrast, residue j may hydrogen-bond to different residues altogether, or to none at all. The hydrogen bond arrangement in parallel beta sheet resembles that in an amide ring motif with 11 atoms. Finally, an ...
The standard hydrogen-bond definition for secondary structure is that of DSSP, which is a purely electrostatic model. It assigns charges of ± q 1 ≈ 0.42 e to the carbonyl carbon and oxygen, respectively, and charges of ± q 2 ≈ 0.20 e to the amide hydrogen and nitrogen, respectively.
The alpha helix is also commonly called a: Pauling–Corey–Branson α-helix (from the names of three scientists who described its structure); 3.6 13-helix because there are 3.6 amino acids in one ring, with 13 atoms being involved in the ring formed by the hydrogen bond (starting with amidic hydrogen and ending with carbonyl oxygen)
In the secondary structure of proteins, hydrogen bonds form between the backbone oxygens and amide hydrogens. When the spacing of the amino acid residues participating in a hydrogen bond occurs regularly between positions i and i + 4, an alpha helix is formed. When the spacing is less, between positions i and i + 3, then a 3 10 helix is formed.
The arrows indicate the hydrogen bonds that were identified in the figures. The relative direction of each strand is indicated by the "+" and "-" at the bottom of the table. Except for strands 1 and 6, all strands are antiparallel. The parallel interaction between strands 1 and 6 accounts for the different appearance of the hydrogen bonding ...
Hydrogen bonds stabilizing secondary structural elements (secondary hydrogen bonds) and those formed between distant amino acid residues - defined as tertiary hydrogen bonds - can be easily distinguished in HB plot, thus, amino acid residues involved in stabilizing protein structure and function can be identified.
According to one definition, a turn is a structural motif where the C α atoms of two residues separated by a few (usually 1 to 5) peptide bonds are close (less than 7 Å [0.70 nm]). [1] The proximity of the terminal C α atoms often correlates with formation of an inter main chain hydrogen bond between the corresponding residues. Such hydrogen ...
Beta hairpins were originally categorized solely by the number of amino acid residues in their loop sequences, such that they were named one-residue, two-residue, etc. [2] This system, however, is somewhat ambiguous as it does not take into account whether the residues that signal the end of the hairpin are singly or doubly hydrogen bonded to one another.