Search results
Results from the WOW.Com Content Network
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.
The relationship, described by Schwedler's theorem, between distributed load and shear force magnitude is: [3] d Q d x = − q {\displaystyle {\frac {dQ}{dx}}=-q} Some direct results of this is that a shear diagram will have a point change in magnitude if a point load is applied to a member, and a linearly varying shear magnitude as a result of ...
In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p 1, and a subsequent momentum is p 2, the object has received an impulse J: =. Momentum is a vector quantity, so impulse is also a vector quantity.
A more descriptive term is force couple or pure moment. Its effect is to impart angular momentum but no linear momentum. In rigid body dynamics, force couples are free vectors, meaning their effects on a body are independent of the point of application. The resultant moment of a couple is a special case of moment.
The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.
This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [1] [2] [3] and that the particles are free.
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
where τ zx is the flux of x-directed momentum in the z-direction, ν is μ/ρ, the momentum diffusivity, z is the distance of transport or diffusion, ρ is the density, and μ is the dynamic viscosity. Newton's law of viscosity is the simplest relationship between the flux of momentum and the velocity gradient.