Search results
Results from the WOW.Com Content Network
In statistics, a concordant pair is a pair of observations, each on two variables, (X 1,Y 1) and (X 2,Y 2), having the property that ...
Somers’ D takes values between when all pairs of the variables disagree and when all pairs of the variables agree. Somers’ D is named after Robert H. Somers, who proposed it in 1962. [1] Somers’ D plays a central role in rank statistics and is the parameter behind many nonparametric methods. [2]
A simple algorithm developed in BASIC computes Tau-b coefficient using an alternative formula. [13] Be aware that some statistical packages, e.g. SPSS, use alternative formulas for computational efficiency, with double the 'usual' number of concordant and discordant pairs. [14]
So, a high value in the numerator means that most pairs are concordant, indicating that the two rankings are consistent. Note that a tied pair is not regarded as concordant or discordant. If there is a large number of ties, the total number of pairs (in the denominator of the expression of ) should be adjusted accordingly."
The only pair that does not support the hypothesis are the two runners with ranks 5 and 6, because in this pair, the runner from Group B had the faster time. By the Kerby simple difference formula, 95% of the data support the hypothesis (19 of 20 pairs), and 5% do not support (1 of 20 pairs), so the rank correlation is r = .95 − .05 = .90.
In statistics, Goodman and Kruskal's gamma is a measure of rank correlation, i.e., the similarity of the orderings of the data when ranked by each of the quantities.It measures the strength of association of the cross tabulated data when both variables are measured at the ordinal level.
For a group of twins in which at least one member of each pair is affected, probandwise concordance is a measure of the proportion of twins who have the illness who have an affected twin and can be calculated with the formula of 2C/(2C+D), in which C is the number of concordant pairs and D is the number of discordant pairs.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.