enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Internal energy - Wikipedia

    en.wikipedia.org/wiki/Internal_energy

    The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization.

  3. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature . The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process ...

  4. Joule expansion - Wikipedia

    en.wikipedia.org/wiki/Joule_expansion

    Since the internal energy of the gas during Joule expansion is constant, cooling must be due to the conversion of internal kinetic energy to internal potential energy, with the opposite being the case for warming. Intermolecular forces are repulsive at short range and attractive at long range (for example, see the Lennard-Jones potential ...

  5. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    That axiom stated that the internal energy of a phase in equilibrium is a function of state, that the sum of the internal energies of the phases is the total internal energy of the system, and that the value of the total internal energy of the system is changed by the amount of work done adiabatically on it, considering work as a form of energy.

  6. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    A particular consequence of this is that the total energy of an isolated system does not change. The concept of internal energy and its relationship to temperature. If a system has a definite temperature, then its total energy has three distinguishable components, termed kinetic energy (energy due to the motion of the system as a whole ...

  7. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    At the melting pressure, liquid and solid are in equilibrium. The third law demands that the entropies of the solid and liquid are equal at T = 0. As a result, the latent heat of melting is zero, and the slope of the melting curve extrapolates to zero as a result of the Clausius–Clapeyron equation. [13]: 140

  8. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  9. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    Forms of energy include the kinetic energy of a moving object, the potential energy stored by an object (for instance due to its position in a field), the elastic energy stored in a solid object, chemical energy associated with chemical reactions, the radiant energy carried by electromagnetic radiation, the internal energy contained within a ...