Search results
Results from the WOW.Com Content Network
The gas viscosity model of Chung et alios (1988) [5] is combination of the Chapman–Enskog(1964) kinetic theory of viscosity for dilute gases and the empirical expression of Neufeld et alios (1972) [6] for the reduced collision integral, but expanded empirical to handle polyatomic, polar and hydrogen bonding fluids over a wide temperature ...
The viscosity equation further presupposes that there is only one type of gas molecules, and that the gas molecules are perfect elastic and hard core particles of spherical shape. This assumption of elastic, hard core spherical molecules, like billiard balls, implies that the collision cross section of one molecule can be estimated by σ = π ...
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
Viscosity in gases arises from molecules traversing layers of flow and transferring momentum between layers. This transfer of momentum can be thought of as a frictional force between layers of flow. Since the momentum transfer is caused by free motion of gas molecules between collisions, increasing thermal agitation of the molecules results in ...
Diluent gases for this use are metabolically inert and non-toxic, but may have some level of narcotic effect at high partial pressure. The commonly used diluents for breathing gases are nitrogen , provided in the form of air, and helium , provided as heliox , or both nitrogen and helium together as trimix .
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
The same direct relationship applies to gases and vapors diluted in air for example. Although, thorough mixing of gases and vapors may not be as easily accomplished. [citation needed] For example, if there are 10 grams of salt (the solute) dissolved in 1 litre of water (the solvent), this solution has a certain salt concentration . If one adds ...