Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
where the above convention for the coefficients of the polynomials agrees with the definition of the binomial coefficients, because both give zero for all i > m and j > n, respectively. By comparing coefficients of x r , Vandermonde's identity follows for all integers r with 0 ≤ r ≤ m + n .
A binomial raised to the n th power, represented as (x + y) n can be expanded by means of the binomial theorem or, equivalently, using Pascal's triangle. For example, the square (x + y) 2 of the binomial (x + y) is equal to the sum of the squares of the two terms and twice the product of the terms, that is:
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be ...
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.
D E P A R T M E N T O F S T A T E September 5, 2007 2 UNCLASSIFIED UNCLASSIFIED Table of Contents SECTION SLIDE Highlights 1. Defeat the Terrorists and Neutralize the Insurgents 2. Transition Iraq to Security Self-Reliance
In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).