Search results
Results from the WOW.Com Content Network
RNA-Seq can also be used to determine exon/intron boundaries and verify or amend previously annotated 5' and 3' gene boundaries. Recent advances in RNA-Seq include single cell sequencing, bulk RNA sequencing, [6] 3' mRNA-sequencing, in situ sequencing of fixed tissue, and native RNA molecule sequencing with single-molecule real-time sequencing. [7]
On benchmarks with standard RNA-Seq data, kallisto can quantify 30 million human reads in less than 3 minutes on a Mac desktop computer using only the read sequences and a transcriptome index that itself takes less than 10 minutes to build."
Unlike standard bulk RNA-seq methods which require around 30 million reads per sample for robust gene expression information, for BRB-seq, a sequencing depth of between one and five million reads per sample is sufficient to detect the majority of expressed genes in a sample. Lowly expressed genes can be detected by sequencing at higher depths.
For example, to investigate a biological process which is estimated to occur for an hour, a researcher might design an experiment where the process is triggered for five minutes, 15 minutes, 30 minutes, 45 minutes, one hour, and two hours in separate cell culture samples before harvesting the cells for RNA-seq analysis.
3' mRNA-seq methods are generally cheaper per sample than standard bulk RNA-seq methods. [2] [7] [8] [9] This is because of the lower sequencing depth required due to only the 3' end of mRNA molecules being sequenced instead of the whole length of entire transcripts. Read depths of between one million and five million reads are recommended in ...
RNA Seq Experiment. The single-cell RNA-seq technique converts a population of RNAs to a library of cDNA fragments. These fragments are sequenced by high-throughput next generation sequencing techniques and the reads are mapped back to the reference genome, providing a count of the number of reads associated with each gene. [13]
The earliest RNA-Seq work was published in 2006 with one hundred thousand transcripts sequenced using 454 technology. [40] This was sufficient coverage to quantify relative transcript abundance. RNA-Seq began to increase in popularity after 2008 when new Solexa/Illumina technologies allowed one billion transcript sequences to be recorded.
RNA-Seq transcriptomics by next gen sequencing will mean these barriers no longer hold true. Any organism's entire transcriptome could be potentially sequenced in one run (for very small bacterial genomes) and not only would the identification of each transcript be available but expression profiling is possible as quantitative reads can also be ...