Ad
related to: pre order vs partial order of equations
Search results
Results from the WOW.Com Content Network
A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a directed acyclic graph. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph.
Conversely, a strict partial order < on may be converted to a non-strict partial order by adjoining all relationships of that form; that is, := < is a non-strict partial order. Thus, if ≤ {\displaystyle \leq } is a non-strict partial order, then the corresponding strict partial order < is the irreflexive kernel given by a < b if a ≤ b and a ...
For an arbitrary system of ODEs, a set of solutions (), …, are said to be linearly-independent if: + … + = is satisfied only for = … = =.A second-order differential equation ¨ = (,, ˙) may be converted into a system of first order linear differential equations by defining = ˙, which gives us the first-order system:
A total order is a total preorder which is antisymmetric, in other words, which is also a partial order. Total preorders are sometimes also called preference relations . The complement of a strict weak order is a total preorder, and vice versa, but it seems more natural to relate strict weak orders and total preorders in a way that preserves ...
Every well-ordered set is order-equivalent to exactly one ordinal number, by definition. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified with the corresponding ordinal. Order types thus often take the form of arithmetic expressions of ordinals.
Order, an academic journal on order theory; Dense order, a total order wherein between any unequal pair of elements there is always an intervening element in the order; Glossary of order theory; Lexicographical order, an ordering method on sequences analogous to alphabetical order on words; List of order topics, list of order theory topics
In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space.For most spaces that are considered in practice, namely for all those that satisfy the T 0 separation axiom, this preorder is even a partial order (called the specialization order).
The identity relation = on any set is also a partial order in which every two distinct elements are incomparable. It is also the only relation that is both a partial order and an equivalence relation because it satisfies both the antisymmetry property of partial orders and the symmetry property of equivalence relations. Many advanced properties ...
Ad
related to: pre order vs partial order of equations