Search results
Results from the WOW.Com Content Network
For example, += and -= are often called plus equal(s) and minus equal(s), instead of the more verbose "assignment by addition" and "assignment by subtraction". The binding of operators in C and C++ is specified (in the corresponding Standards) by a factored language grammar, rather than a precedence table. This creates some subtle conflicts.
A number-line visualization of the algebraic addition 2 + 4 = 6. A "jump" that has a distance of 2 followed by another that is long as 4, is the same as a translation by 6. A number-line visualization of the unary addition 2 + 4 = 6. A translation by 4 is equivalent to four translations by 1.
They are commonly found in imperative programming languages. C-like languages feature two versions (pre- and post-) of each operator with slightly different semantics. In languages syntactically derived from B (including C and its various derivatives), the increment operator is written as ++ and the decrement operator is written as --. Several ...
In computer programming, operators are constructs defined within programming languages which behave generally like functions, but which differ syntactically or semantically. Common simple examples include arithmetic (e.g. addition with +), comparison (e.g. "greater than" with >), and logical operations (e.g. AND, also written && in some languages).
C mathematical operations are a group of functions in the standard library of the C programming language implementing basic mathematical functions. [1] [2] All functions use floating-point numbers in one manner or another. Different C standards provide different, albeit backwards-compatible, sets of functions.
Several algorithms use a stack (separate from the usual function call stack of most programming languages) as the principal data structure with which they organize their information. These include: Graham scan, an algorithm for the convex hull of a two-dimensional system of points. A convex hull of a subset of the input is maintained in a stack ...
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
Operator overloading is syntactic sugar, and is used because it allows programming using notation nearer to the target domain [1] and allows user-defined types a similar level of syntactic support as types built into a language. It is common, for example, in scientific computing, where it allows computing representations of mathematical objects ...