Search results
Results from the WOW.Com Content Network
Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.
The first deep learning multilayer perceptron trained by stochastic gradient descent [28] was published in 1967 by Shun'ichi Amari. [29] In computer experiments conducted by Amari's student Saito, a five layer MLP with two modifiable layers learned internal representations to classify non-linearily separable pattern classes. [10]
A deep Q-network (DQN) is a type of deep learning model that combines a deep neural network with Q-learning, a form of reinforcement learning. Unlike earlier reinforcement learning agents, DQNs that utilize CNNs can learn directly from high-dimensional sensory inputs via reinforcement learning. [154]
GNoME employs deep learning techniques to efficiently explore potential material structures, achieving a significant increase in the identification of stable inorganic crystal structures. The system's predictions were validated through autonomous robotic experiments, demonstrating a noteworthy success rate of 71%.
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
The gradient backpropagation can be regulated to avoid gradient vanishing and exploding in order to keep long or short-term memory. The cross-neuron information is explored in the next layers. IndRNN can be robustly trained with non-saturated nonlinear functions such as ReLU. Deep networks can be trained using skip connections.
Inverse reinforcement learning can be used for learning from demonstrations (or apprenticeship learning) by inferring the demonstrator's reward and then optimizing a policy to maximize returns with RL. Deep learning approaches have been used for various forms of imitation learning and inverse RL. [32]
Liulishuo, an online English learning platform, utilized TensorFlow to create an adaptive curriculum for each student. [79] TensorFlow was used to accurately assess a student's current abilities, and also helped decide the best future content to show based on those capabilities.