Search results
Results from the WOW.Com Content Network
Electrons have the lowest mass of any charged lepton (or electrically charged particle of any type) and belong to the first generation of fundamental particles. [78] The second and third generation contain charged leptons, the muon and the tau , which are identical to the electron in charge, spin and interactions , but are more massive.
In the 1911 Rutherford model, the atom consisted of a small positively charged massive nucleus surrounded by a much larger cloud of negatively charged electrons. In 1920, Ernest Rutherford suggested that the nucleus consisted of positive protons and neutrally charged particles, suggested to be a proton and an electron bound in some way. [ 46 ]
The negatively charged electron has a mass of about 1 / 1836 of that of a hydrogen atom. The remainder of the hydrogen atom's mass comes from the positively charged proton. The atomic number of an element is the number of protons in its nucleus. Neutrons are neutral particles having a mass slightly greater than that of the proton.
The elementary charge, usually denoted by e, is a fundamental physical constant, defined as the electric charge carried by a single proton (+1 e) or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 e. [2] [a]
In 1898, J. J. Thomson found that the positive charge of a hydrogen ion is equal to the negative charge of an electron, and these were then the smallest known charged particles. [22] Thomson later found that the positive charge in an atom is a positive multiple of an electron's negative charge. [23]
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
On 4 July 2012, the discovery of a new particle with a mass between 125 and 127 GeV/c 2 was announced; physicists suspected that it was the Higgs boson. Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even parity and zero spin, two ...
Electric charge is a conserved property: the net charge of an isolated system, the quantity of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms ...