enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    As shown in an earlier example, the solution of Equation is the exponential = /. Equation is the time-independent Schrödinger equation. The eigenfunctions φ k of the Hamiltonian operator are stationary states of the quantum mechanical system, each with a corresponding energy E k. They represent allowable energy states of the system and may be ...

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Comparing this equation to equation , it follows immediately that a left eigenvector of is the same as the transpose of a right eigenvector of , with the same eigenvalue. Furthermore, since the characteristic polynomial of A T {\displaystyle A^{\textsf {T}}} is the same as the characteristic polynomial of A {\displaystyle A} , the left and ...

  4. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    Studying the symmetry of a quantum system can, in some cases, enable us to find the energy levels and degeneracies without solving the Schrödinger equation, hence reducing effort. Mathematically, the relation of degeneracy with symmetry can be clarified as follows. Consider a symmetry operation associated with a unitary operator S.

  5. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.

  6. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The phenomenology of quantum physics arose roughly between 1895 and 1915, and for the 10 to 15 years before the development of quantum mechanics (around 1925) physicists continued to think of quantum theory within the confines of what is now called classical physics, and in particular within the same mathematical structures.

  7. Variational method (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Variational_method...

    Suppose we are given a Hilbert space and a Hermitian operator over it called the Hamiltonian.Ignoring complications about continuous spectra, we consider the discrete spectrum of and a basis of eigenvectors {| } (see spectral theorem for Hermitian operators for the mathematical background): | =, where is the Kronecker delta = {, =, and the {| } satisfy the eigenvalue equation | = | .

  8. Sturm–Liouville theory - Wikipedia

    en.wikipedia.org/wiki/Sturm–Liouville_theory

    The differential equation is said to be in Sturm–Liouville form or self-adjoint form.All second-order linear homogenous ordinary differential equations can be recast in the form on the left-hand side of by multiplying both sides of the equation by an appropriate integrating factor (although the same is not true of second-order partial differential equations, or if y is a vector).

  9. Two-state quantum system - Wikipedia

    en.wikipedia.org/wiki/Two-state_quantum_system

    The time-independent Schrödinger equation states that | = | ; substituting for | in terms of the basis states from above, and multiplying both sides by | or | produces a system of two linear equations that can be written in matrix form, () = (), or = which is a 2×2 matrix eigenvalues and eigenvectors problem. As mentioned above, this equation ...