Search results
Results from the WOW.Com Content Network
Boehm titration results for various chemical reactions of single-layer graphene oxide, which reveal reactivity of the carboxylic groups and the resultant stability of the SLGO sheets after treatment. Hydrazine reflux is commonly used for reducing SLGO to SLG(R), but titrations show that only around 20–30% of the carboxylic groups are lost ...
The Si(100)/H surface does not perturb the electronic properties of graphene, whereas the interaction between the clean Si(100) surface and graphene changes the electronic states of graphene significantly. This effect results from the covalent bonding between C and surface Si atoms, modifying the π-orbital network of the graphene layer.
[59] [60] The Si(100)/H surface does not perturb graphene's electronic properties, whereas the interaction between it and the clean Si(100) surface changes its electronic states significantly. This effect results from the covalent bonding between C and surface Si atoms, modifying the π-orbital network of the graphene layer.
Exfoliation is a process that separates layered materials into nanomaterials by breaking the bonds between layers using mechanical, chemical, or thermal procedures.. While exfoliation has historical roots dating back centuries, significant advances and widespread research gained momentum after Novoselov and Geim's discovery of graphene using Scotch tape in 2004.
The results present a conceptual change in graphene research and indicate an alternative route for graphene applications in information processing. [ 61 ] In 2013 researchers created transistors printed on flexible plastic that operate at 25 gigahertz, sufficient for communications circuits and that can be fabricated at scale.
Graphene nanoribbons (GNRs, also called nano-graphene ribbons or nano-graphite ribbons) are strips of graphene with width less than 100 nm. Graphene ribbons were introduced as a theoretical model by Mitsutaka Fujita and coauthors to examine the edge and nanoscale size effect in graphene.
The basic chemical reaction involved in the Hummers' method is the oxidation of graphite, introducing molecules of oxygen to the pure carbon graphene. The reaction occurs between the graphene and the concentrated sulfuric acid with the potassium permanganate and sodium nitrate acting as catalysts.
Graphene quantum dots (GQDs) are graphene nanoparticles with a size less than 100 nm. [1] Due to their exceptional properties such as low toxicity, stable photoluminescence , chemical stability and pronounced quantum confinement effect, GQDs are considered as a novel material for biological, opto-electronics, energy and environmental applications.