Search results
Results from the WOW.Com Content Network
Steady state is also used as an approximation in systems with on-going transient signals, such as audio systems, to allow simplified analysis of first order performance. Sinusoidal Steady State Analysis is a method for analyzing alternating current circuits using the same techniques as for solving DC circuits. [1]
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
Damped oscillation is a typical transient response, where the output value oscillates until finally reaching a steady-state value. In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt ...
Steady state is reached (attained) after transient (initial, oscillating or turbulent) state has subsided. During steady state, a system is in relative stability. Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics.
Non-steady-state methods to measure the thermal conductivity do not require the signal to obtain a constant value. Instead, the signal is studied as a function of time. The advantage of these methods is that they can in general be performed more quickly, since there is no need to wait for a steady-state situation.
Steady state – State in which variables of a system are unchanging in time; Transient response – Response of a system to a change from an equilibrium state; Transient state – State of a system after conditions are changed, before it settles into steady state; Underactuation; Youla–Kucera parametrization – Formulaic parametrization
A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.
The very idea of steady state operation presents a series of physics and technology challenges. For example, the excellent plasma performance which was accomplished earlier, was with the surrounding material wall acting as a good 'pump' of particles, a fact which may not be true in steady state. So one has to try and accomplish an equally good ...