enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equiangular polygon - Wikipedia

    en.wikipedia.org/wiki/Equiangular_polygon

    A direct equiangular polygon has all angles turning in the same direction in a plane and can include multiple turns. Convex equiangular polygons are always direct. An indirect equiangular polygon can include angles turning right or left in any combination. A skew equiangular polygon may be isogonal, but can't be considered direct since it is ...

  3. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.

  4. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A regular hexagon has Schläfli symbol {6} [2] and can also be constructed as a truncated equilateral triangle, t{3}, which alternates two types of edges. A regular hexagon is defined as a hexagon that is both equilateral and equiangular. It is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an ...

  5. Convex polygon - Wikipedia

    en.wikipedia.org/wiki/Convex_polygon

    The polygon is the convex hull of its edges. Additional properties of convex polygons include: The intersection of two convex polygons is a convex polygon. A convex polygon may be triangulated in linear time through a fan triangulation, consisting in adding diagonals from one vertex to all other vertices.

  6. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    [2] [3] A kite may also be called a dart, [4] particularly if it is not convex. [5] [6] Every kite is an orthodiagonal quadrilateral (its diagonals are at right angles) and, when convex, a tangential quadrilateral (its sides are tangent to an inscribed circle). The convex kites are exactly the quadrilaterals that are both orthodiagonal and ...

  7. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    With a final vertex 3 4.6, 4 more contiguous equilateral triangles and a single regular hexagon. However, this notation has two main problems related to ambiguous conformation and uniqueness [2] First, when it comes to k-uniform tilings, the notation does not explain the relationships between the vertices. This makes it impossible to generate a ...

  8. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A convex quadrilateral is tangential if and only if opposite sides have equal sums. Tangential trapezoid: a trapezoid where the four sides are tangents to an inscribed circle. Cyclic quadrilateral: the four vertices lie on a circumscribed circle. A convex quadrilateral is cyclic if and only if opposite angles sum to 180°.

  9. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    In fact the converse also holds: given two circles (one within the other) with radii R and r and distance x between their centers satisfying the condition in Fuss' theorem, there exists a convex quadrilateral inscribed in one of them and tangent to the other [23] (and then by Poncelet's closure theorem, there exist infinitely many of them).