enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    Segmentation of a 512 × 512 image takes less than a second on a modern (2015) GPU using the U-Net architecture. [1] [3] [4] [5] The U-Net architecture has also been employed in diffusion models for iterative image denoising. [6] This technology underlies many modern image generation models, such as DALL-E, Midjourney, and Stable Diffusion.

  3. Computer Vision Annotation Tool - Wikipedia

    en.wikipedia.org/wiki/Computer_Vision_Annotation...

    Originally developed by Intel, CVAT is designed for use by a professional data annotation team, with a user interface optimized for computer vision annotation tasks. [2] CVAT supports the primary tasks of supervised machine learning: object detection, image classification, and image segmentation. CVAT allows users to annotate data for each of ...

  4. CellProfiler - Wikipedia

    en.wikipedia.org/wiki/CellProfiler

    CellProfiler interfaces with the high-performance scientific libraries NumPy and SciPy for many mathematical operations, the Open Microscopy Environment [11] Consortium’s Bio-Formats library for reading more than 100 image file formats, ImageJ for use of plugins and macros, and ilastik for pixel-based classification. [12]

  5. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    This is a 21 class land use image dataset meant for research purposes. There are 100 images for each class. 2,100 Image chips of 256x256, 30 cm (1 foot) GSD Land cover classification 2010 [164] Yi Yang and Shawn Newsam SAT-4 Airborne Dataset Images were extracted from the National Agriculture Imagery Program (NAIP) dataset.

  6. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...

  7. Graph cuts in computer vision - Wikipedia

    en.wikipedia.org/wiki/Graph_cuts_in_computer_vision

    As applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems (early vision [1]), such as image smoothing, the stereo correspondence problem, image segmentation, object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization.

  8. Random walker algorithm - Wikipedia

    en.wikipedia.org/wiki/Random_walker_algorithm

    The random walker algorithm is an algorithm for image segmentation.In the first description of the algorithm, [1] a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background".

  9. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]