Search results
Results from the WOW.Com Content Network
The order of the natural numbers shown on the number line. A number line is a picture of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin point representing the number zero and evenly spaced marks in either direction representing integers, imagined to extend infinitely.
HackerRank categorizes most of their programming challenges into a number of core computer science domains, [3] including database management, mathematics, and artificial intelligence. When a programmer submits a solution to a programming challenge, their submission is scored on the accuracy of their output.
In number theory, Vieta jumping, also known as root flipping, is a proof technique. It is most often used for problems in which a relation between two integers is given, along with a statement to prove about its solutions. In particular, it can be used to produce new solutions of a quadratic Diophantine equation from known ones.
Bangalore, India based company providing an online contest like environment aiming at providing recruitment assessment solutions. HackerRank: HackerRank offers programming problems in different domains of Computer Science. It also hosts annual Codesprints which help connect the coders and Silicon Valley startups. LeetCode
An elementary example of a random walk is the random walk on the integer number line which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion ), the search path of a foraging animal, or the price of a fluctuating ...
In mathematics, a jumping line or exceptional line of a vector bundle over projective space is a projective line in projective space where the vector bundle has exceptional behavior, in other words the structure of its restriction to the line "jumps". Jumping lines were introduced by R. L. E. Schwarzenberger in 1961. [1] [2] The jumping lines ...
A triangular-pyramid version of the cannonball problem, which is to yield a perfect square from the N th Tetrahedral number, would have N = 48. That means that the (24 × 2 = ) 48th tetrahedral number equals to (70 2 × 2 2 = 140 2 = ) 19600. This is comparable with the 24th square pyramid having a total of 70 2 cannonballs. [5]
Each possible contiguous sub-array is represented by a point on a colored line. That point's y-coordinate represents the sum of the sample. Its x-coordinate represents the end of the sample, and the leftmost point on that colored line represents the start of the sample. In this case, the array from which samples are taken is [2, 3, -1, -20, 5, 10].