Search results
Results from the WOW.Com Content Network
In order to fully utilize the bandwidth of different types of memory such as caches and memory banks, few compilers or CPU architectures ensure perfectly strong ordering. [1] [5] Among the commonly used architectures, x86-64 processors have the strongest memory order, but may still defer memory store instructions until after memory load ...
Most modern CPUs are so fast that for most program workloads, the bottleneck is the locality of reference of memory accesses and the efficiency of the caching and memory transfer between different levels of the hierarchy [citation needed]. As a result, the CPU spends much of its time idling, waiting for memory I/O to complete.
Specificity of processing is explained on a neurological basis by studies that show brain activity in the same location when a visual memory is encoded and retrieved, and lexical memory in a different location. [6] Visual memory areas were mostly located within the bilateral extrastriate visual cortex.
In computing, a memory barrier, also known as a membar, memory fence or fence instruction, is a type of barrier instruction that causes a central processing unit (CPU) or compiler to enforce an ordering constraint on memory operations issued before and after the barrier instruction. This typically means that operations issued prior to the ...
Memory interleaving is a way to distribute individual addresses over memory modules. Its aim is to keep the most of modules busy as computations proceed. With memory interleaving, the low-order k bits of the memory address generally specify the module on several buses.
The memory model stipulates that changes to the values of shared variables only need to be made visible to other threads when such a synchronization barrier is reached. Moreover, the entire notion of a race condition is defined over the order of operations with respect to these memory barriers.
The storage element of the DRAM memory cell is the capacitor labeled (4) in the diagram above. The charge stored in the capacitor degrades over time, so its value must be refreshed (read and rewritten) periodically. The nMOS transistor (3) acts as a gate to allow reading or writing when open or storing when closed. [37]
The Java Memory Model (JMM) defines the allowable behavior of multithreaded programs, and therefore describes when such reorderings are possible. It places execution-time constraints on the relationship between threads and main memory in order to achieve consistent and reliable Java applications.