enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydrodynamical helicity - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamical_helicity

    In meteorology, [2] helicity corresponds to the transfer of vorticity from the environment to an air parcel in convective motion. Here the definition of helicity is simplified to only use the horizontal component of wind and vorticity, and to only integrate in the vertical direction, replacing the volume integral with a one-dimensional definite integral or line integral:

  3. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In the first, constant-volume case (locked piston), there is no external motion, and thus no mechanical work is done on the atmosphere; C V is used. In the second case, additional work is done as the volume changes, so the amount of heat required to raise the gas temperature (the specific heat capacity) is higher for this constant-pressure case.

  4. Convective available potential energy - Wikipedia

    en.wikipedia.org/wiki/Convective_available...

    By contrast, other conditions, such as a less warm air parcel or a parcel in an atmosphere with a temperature inversion (in which the temperature increases above a certain height) have much less capacity to support vigorous upward air movement, thus the potential energy level (CAPE) would be much lower, as would the probability of thunderstorms.

  5. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The corresponding expression for the ratio of specific heat capacities remains the same since the thermodynamic system size-dependent quantities, whether on a per mass or per mole basis, cancel out in the ratio because specific heat capacities are intensive properties. Thus:

  6. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).

  7. Volumetric heat capacity - Wikipedia

    en.wikipedia.org/wiki/Volumetric_heat_capacity

    The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J⋅K −1 ⋅kg −1) times the density of the substance (in kg/L, or g/mL). [1] It is defined to serve as an intensive property .

  8. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .

  9. Heat of combustion - Wikipedia

    en.wikipedia.org/wiki/Heat_of_combustion

    The lower heating value (LHV; net calorific value; NCV, or lower calorific value; LCV) is another measure of available thermal energy produced by a combustion of fuel, measured as a unit of energy per unit mass or volume of substance. In contrast to the HHV, the LHV considers energy losses such as the energy used to vaporize water – although ...