enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eulerian number - Wikipedia

    en.wikipedia.org/wiki/Eulerian_number

    In combinatorics, the Eulerian number (,) is the number of permutations of the numbers 1 to in which exactly elements are greater than the previous element (permutations with "ascents"). Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis .

  3. Eisenstein integer - Wikipedia

    en.wikipedia.org/wiki/Eisenstein_integer

    an ordinary prime number (or rational prime) which is congruent to 2 mod 3 is also an Eisenstein prime. 3 and each rational prime congruent to 1 mod 3 are equal to the norm x 2 − xy + y 2 of an Eisenstein integer x + ωy.

  4. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  5. Euler numbers - Wikipedia

    en.wikipedia.org/wiki/Euler_numbers

    The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. The latter is the function in the definition. They also occur in combinatorics , specifically when counting the number of alternating permutations of a set with an even number of elements.

  6. List of topics named after Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/List_of_topics_named_after...

    Euler numbers, integers occurring in the coefficients of the Taylor series of 1/cosh t; Eulerian numbers count certain types of permutations. Euler number (physics), the cavitation number in fluid dynamics. Euler number (algebraic topology) – now, Euler characteristic, classically the number of vertices minus edges plus faces of a polyhedron.

  7. Lucky numbers of Euler - Wikipedia

    en.wikipedia.org/wiki/Lucky_numbers_of_Euler

    Leonhard Euler published the polynomial k 2 − k + 41 which produces prime numbers for all integer values of k from 1 to 40. Only 6 lucky numbers of Euler exist, namely 2, 3, 5, 11, 17 and 41 (sequence A014556 in the OEIS). [1] Note that these numbers are all prime numbers. The primes of the form k 2 − k + 41 are

  8. Mutually orthogonal Latin squares - Wikipedia

    en.wikipedia.org/wiki/Mutually_orthogonal_Latin...

    A Graeco-Latin square or Euler square or pair of orthogonal Latin squares of order n over two sets S and T (which may be the same), each consisting of n symbols, is an n × n arrangement of cells, each cell containing an ordered pair (s, t), where s is in S and t is in T, such that every row and every column contains each element of S and each element of T exactly once, and that no two cells ...

  9. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    hence has Betti number 1 in dimensions 0 and n, and all other Betti numbers are 0. Its Euler characteristic is then χ = 1 + (−1) n ; that is, either 0 if n is odd , or 2 if n is even . The n dimensional real projective space is the quotient of the n sphere by the antipodal map .