Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; In other projects ... This is a list of statistical procedures which can be used for the analysis of categorical data, also known ...
It does this by representing data as points in a low-dimensional Euclidean space. The procedure thus appears to be the counterpart of principal component analysis for categorical data. [citation needed] MCA can be viewed as an extension of simple correspondence analysis (CA) in that it is applicable to a large set of categorical variables.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
In statistics, the Cochran–Mantel–Haenszel test (CMH) is a test used in the analysis of stratified or matched categorical data.It allows an investigator to test the association between a binary predictor or treatment and a binary outcome such as case or control status while taking into account the stratification. [1]
Correspondence analysis (CA) is a multivariate statistical technique proposed [1] by Herman Otto Hartley (Hirschfeld) [2] and later developed by Jean-Paul Benzécri. [3] It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data. In a similar manner to principal component analysis, it ...
The Cochran–Armitage test for trend, [1] [2] named for William Cochran and Peter Armitage, is used in categorical data analysis when the aim is to assess for the presence of an association between a variable with two categories and an ordinal variable with k categories.
Dummy variables are commonly used in regression analysis to represent categorical variables that have more than two levels, such as education level or occupation. In this case, multiple dummy variables would be created to represent each level of the variable, and only one dummy variable would take on a value of 1 for each observation.
function draw_categorical(n) // where n is the number of samples to draw from the categorical distribution r = 1 s = 0 for i from 1 to k // where k is the number of categories v = draw from a binomial(n, p[i] / r) distribution // where p[i] is the probability of category i for j from 1 to v z[s++] = i // where z is an array in which the results ...