Search results
Results from the WOW.Com Content Network
English: A PDF version for Geometry for Elementary School, based on the print version of that book. Created by myself using PDF24. Created by myself using PDF24. Date
Tangent developable of a curve with zero torsion. The tangent developable is a developable surface; that is, it is a surface with zero Gaussian curvature.It is one of three fundamental types of developable surface; the other two are the generalized cones (the surface traced out by a one-dimensional family of lines through a fixed point), and the cylinders (surfaces traced out by a one ...
A major theorem, often called the fundamental theorem of the differential geometry of surfaces, asserts that whenever two objects satisfy the Gauss-Codazzi constraints, they will arise as the first and second fundamental forms of a regular surface. Using the first fundamental form, it is possible to define new objects on a regular surface.
Calibrated geometry; Cartan connection; Cartan's equivalence method; Catalan's minimal surface; Caustic (mathematics) Cayley's ruled cubic surface; Center of curvature; Chentsov's theorem; Chern–Simons form; Chern–Weil homomorphism; Chern's conjecture (affine geometry) Chern's conjecture for hypersurfaces in spheres; Clairaut's relation ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.
Gauss's original statement of the Theorema Egregium, translated from Latin into English. The theorem is "remarkable" because the definition of Gaussian curvature makes ample reference to the specific way the surface is embedded in 3-dimensional space, and it is quite surprising that the result does not depend on its embedding.
Animation of the torsion and the corresponding rotation of the binormal vector. Let r be a space curve parametrized by arc length s and with the unit tangent vector T.If the curvature κ of r at a certain point is not zero then the principal normal vector and the binormal vector at that point are the unit vectors