Search results
Results from the WOW.Com Content Network
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.
Each tissue, or compartment, has a different half-life. Real tissues will also take more or less time to saturate, but the models do not need to use actual tissue values to produce a useful result. Models with from one to 16 tissue compartments [ 60 ] have been used to generate decompression tables, and dive computers have used up to 20 ...
t 1/2 is the half-life of 40 K; K f is the amount of 40 K remaining in the sample; Ar f is the amount of 40 Ar found in the sample. The scale factor 0.109 corrects for the unmeasured fraction of 40 K which decayed into 40 Ca; the sum of the measured 40 K and the scaled amount of 40 Ar gives the amount of 40 K which was present at the beginning ...
Absorption half-life 1 h, elimination half-life 12 h. Biological half-life ( elimination half-life , pharmacological half-life ) is the time taken for concentration of a biological substance (such as a medication ) to decrease from its maximum concentration ( C max ) to half of C max in the blood plasma .
The half-life, t 1/2, is the time taken for the activity of a given amount of a radioactive substance to decay to half of its initial value. The decay constant , λ " lambda ", the reciprocal of the mean lifetime (in s −1 ), sometimes referred to as simply decay rate .
One of its great advantages is that any sample provides two clocks, one based on uranium-235's decay to lead-207 with a half-life of about 700 million years, and one based on uranium-238's decay to lead-206 with a half-life of about 4.5 billion years, providing a built-in crosscheck that allows accurate determination of the age of the sample ...
A half life is the time it takes the radiation emitted by a specific substance to decay to half the initial value. A large amount of short-lived isotopes such as 97 Zr are present in bomb fallout.
Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]