enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...

  3. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  4. C data types - Wikipedia

    en.wikipedia.org/wiki/C_data_types

    Information about the actual properties, such as size, of the basic arithmetic types, is provided via macro constants in two headers: <limits.h> header (climits header in C++) defines macros for integer types and <float.h> header (cfloat header in C++) defines macros for floating-point types. The actual values depend on the implementation.

  5. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The value distribution is similar to floating point, but the value-to-representation curve (i.e., the graph of the logarithm function) is smooth (except at 0). Conversely to floating-point arithmetic, in a logarithmic number system multiplication, division and exponentiation are simple to implement, but addition and subtraction are complex.

  6. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    In computing, half precision (sometimes called FP16 or float16) is a binary floating-point computer number format that occupies 16 bits (two bytes in modern computers) in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks.

  7. Unit in the last place - Wikipedia

    en.wikipedia.org/wiki/Unit_in_the_last_place

    In computer science and numerical analysis, unit in the last place or unit of least precision (ulp) is the spacing between two consecutive floating-point numbers, i.e., the value the least significant digit (rightmost digit) represents if it is 1.

  8. Type conversion - Wikipedia

    en.wikipedia.org/wiki/Type_conversion

    Conversely, precision can be lost when converting representations from integer to floating-point, since a floating-point type may be unable to exactly represent all possible values of some integer type. For example, float might be an IEEE 754 single precision type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type ...

  9. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating-point value has a significand with a leading digit of zero.