enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Negative binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_binomial_distribution

    Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...

  3. Binomial regression - Wikipedia

    en.wikipedia.org/wiki/Binomial_regression

    Binomial regression models are essentially the same as binary choice models, one type of discrete choice model: the primary difference is in the theoretical motivation (see comparison). In machine learning, binomial regression is considered a special case of probabilistic classification, and thus a generalization of binary classification.

  4. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative ...

  5. Zero-inflated model - Wikipedia

    en.wikipedia.org/wiki/Zero-inflated_model

    In statistical literature, is also expressed as (mu) when referring to Poisson and traditional negative binomial models." In some data, the number of zeros is greater than would be expected using a Poisson distribution or a negative binomial distribution. Data with such an excess of zero counts are described as Zero-inflated.

  6. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Such procedures differ in the assumptions made about the distribution of the variables in the population. If the variable is positive with low values and represents the repetition of the occurrence of an event, then count models like the Poisson regression or the negative binomial model may be used.

  7. Beta negative binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_negative_binomial...

    The beta negative binomial distribution contains the beta geometric distribution as a special case when either = or =. It can therefore approximate the geometric distribution arbitrarily well. It also approximates the negative binomial distribution arbitrary well for large α {\displaystyle \alpha } .

  8. Count data - Wikipedia

    en.wikipedia.org/wiki/Count_data

    This is a special case of the class of generalized linear models which also contains specific forms of model capable of using the binomial distribution (binomial regression, logistic regression) or the negative binomial distribution where the assumptions of the Poisson model are violated, in particular when the range of count values is limited ...

  9. Negative multinomial distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_multinomial...

    In probability theory and statistics, the negative multinomial distribution is a generalization of the negative binomial distribution (NB(x 0, p)) to more than two outcomes. [ 1 ] As with the univariate negative binomial distribution, if the parameter x 0 {\displaystyle x_{0}} is a positive integer, the negative multinomial distribution has an ...