Search results
Results from the WOW.Com Content Network
The first (greatest) term of a polynomial p for this ordering and the corresponding monomial and coefficient are respectively called the leading term, leading monomial and leading coefficient and denoted, in this article, lt(p), lm(p) and lc(p). Most polynomial operations related to Gröbner bases involve the leading terms.
A crude version of this algorithm to find a basis for an ideal I of a polynomial ring R proceeds as follows: Input A set of polynomials F that generates I Output A Gröbner basis G for I. G := F; For every f i, f j in G, denote by g i the leading term of f i with respect to the given monomial ordering, and by a ij the least common multiple of g ...
The leading-order terms (or corrections) within a mathematical equation, expression or model are the terms with the largest order of magnitude. [ 1 ] [ 2 ] The sizes of the different terms in the equation(s) will change as the variables change, and hence, which terms are leading-order may also change.
The leading term of a polynomial is thus the term of the largest monomial (for the chosen monomial ordering). Concretely, let R be any ring of polynomials. Then the set M of the (monic) monomials in R is a basis of R , considered as a vector space over the field of the coefficients.
The leading term of e λ t (X 1, ..., X n) is X λ. Proof. The leading term of the product is the product of the leading terms of each factor (this is true whenever one uses a monomial order, like the lexicographic order used here), and the leading term of the factor e i (X 1, ..., X n) is clearly X 1 X 2 ···X i.
If f(n) = n 2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n 2. The function f(n) is said to be "asymptotically equivalent to n 2, as n → ∞". This is often written symbolically as f (n) ~ n 2, which is read as "f(n) is asymptotic to n 2". An example of an important asymptotic result is the prime number ...
Yahoo faz parte da família de marcas Yahoo. O Yahoo coletará e usará seus dados como parte dos serviços oferecidos, para entender seus interesses e oferecer e mensurar anúncios personalizados.
This is the form of the remainder term mentioned after the actual statement of Taylor's theorem with remainder in the mean value form. The Lagrange form of the remainder is found by choosing G ( t ) = ( x − t ) k + 1 {\displaystyle G(t)=(x-t)^{k+1}} and the Cauchy form by choosing G ( t ) = t − a {\displaystyle G(t)=t-a} .