Search results
Results from the WOW.Com Content Network
The "Defining markers" column lists the evidence in the rock used to define the boundary. (Ideally, these are applicable in rock sections worldwide.) Most of the boundaries rely on the fossil record (biologic), paleomagnetic data (magnetic), and/or climate data determined by carbon and oxygen isotopes.
Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]
The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...
A geological contact is a boundary which separates one rock body from another. [1] A contact can be formed during deposition, by the intrusion of magma, [2] or through faulting or other deformation of rock beds that brings distinct rock bodies into contact. [3]
Also called Indianite. A mineral from the lime-rich end of the plagioclase group of minerals. Anorthites are usually silicates of calcium and aluminium occurring in some basic igneous rocks, typically those produced by the contact metamorphism of impure calcareous sediments. anticline An arched fold in which the layers usually dip away from the fold axis. Contrast syncline. aphanic Having the ...
If the pressure depends only on density and vice versa, the fluid dynamics are called barotropic. In the atmosphere, this corresponds to a lack of fronts, as in the tropics. If there are fronts, the flow is baroclinic, and instabilities such as cyclones can occur. [6]
Experimentally determined mineral or mineral-assemblage stability ranges are plotted as metamorphic reaction boundaries in a pressure–temperature cartesian coordinate system to produce a petrogenetic grid for a particular rock composition. The regions of overlap of the stability fields of minerals form equilibrium mineral assemblages used to ...
A high pressure-low temperature (HPLT) belt [42] [43] A low pressure-high temperature (LPHT) belt [42] [43] The HPLT metamorphic belt is located along subduction zones, and commonly associated with a clockwise P-T-t path. [42] [44] The HPLT condition is resulted from crustal thickening due to convergence meanwhile without being heated by magma ...