enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid 's Elements . If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers. — Euclid, Elements Book VII, Proposition 30.

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Many properties of a natural number n can be seen or directly computed from the prime factorization of n. The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 (since p = p 1).

  4. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    On a quantum computer, to factor an integer , Shor's algorithm runs in polynomial time, meaning the time taken is polynomial in , where is the size of the integer given as input. [6] Specifically, it takes quantum gates of order using fast multiplication, [7] or even utilizing the asymptotically fastest multiplication algorithm currently known ...

  5. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares : That difference is algebraically factorable as ; if neither factor equals one, it is a proper factorization of N . Each odd number has such a representation. Indeed, if is a factorization of N, then.

  6. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    Assume that p − 1, where p is the smallest prime factor of n, can be modelled as a random number of size less than √ n. By Dixon's theorem, the probability that the largest factor of such a number is less than (p − 1) 1/ε is roughly ε −ε; so there is a probability of about 3 −3 = 1/27 that a B value of n 1/6 will yield a factorisation.

  7. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2) (x + 2) is a polynomial ...

  8. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes . For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...

  9. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    A simple formula is. for positive integer , where is the floor function, which rounds down to the nearest integer. By Wilson's theorem, is prime if and only if . Thus, when is prime, the first factor in the product becomes one, and the formula produces the prime number . But when is not prime, the first factor becomes zero and the formula ...