Search results
Results from the WOW.Com Content Network
When considering an antenna's directional pattern, gain with respect to a dipole does not imply a comparison of that antenna's gain in each direction to a dipole's gain in that direction. Rather, it is a comparison between the antenna's gain in each direction to the peak gain of the dipole (1.64). In any direction, therefore, such numbers are 2 ...
An antenna designer must take into account the application for the antenna when determining the gain. High-gain antennas have the advantage of longer range and better signal quality, but must be aimed carefully in a particular direction. Low-gain antennas have shorter range, but the orientation of the antenna is inconsequential.
This corresponds to the following non-logarithmic gain model: =, where = / is the average multiplicative gain at the reference distance from the transmitter. This gain depends on factors such as carrier frequency, antenna heights and antenna gain, for example due to directional antennas; and = / is a stochastic process that reflects flat fading.
Free-space loss increases with the square of distance between the antennas because the radio waves spread out by the inverse square law and decreases with the square of the wavelength of the radio waves. The FSPL is rarely used standalone, but rather as a part of the Friis transmission formula, which includes the gain of antennas. [3]
Friis' original idea behind his transmission formula was to dispense with the usage of directivity or gain when describing antenna performance. In their place is the descriptor of antenna capture area as one of two important parts of the transmission formula that characterizes the behavior of a free-space radio circuit.
Path loss normally includes propagation losses caused by the natural expansion of the radio wave front in free space (which usually takes the shape of an ever-increasing sphere), absorption losses (sometimes called penetration losses), when the signal passes through media not transparent to electromagnetic waves, diffraction losses when part of the radiowave front is obstructed by an opaque ...
A e = (λ 2 G)/4π : the antenna effective aperture; P D is the power density in watts per unit area; P r is the power delivered into the load resistance presented by the receiver (normally 50 ohms) G: the antenna gain; is the magnetic constant; is the electric constant
where L50 is the 50th percentile (i.e., median) value of propagation path loss, LF is the free space propagation loss, A mu is the median attenuation relative to free space, G(hte) is the base station antenna height gain factor, G(hre) is the mobile antenna height gain factor, and G AREA is the gain due to the type of environment. Note that the ...