Search results
Results from the WOW.Com Content Network
The kinetic theory of gases entails that due to the microscopic reversibility of the gas particles' detailed dynamics, the system must obey the principle of detailed balance. Specifically, the fluctuation-dissipation theorem applies to the Brownian motion (or diffusion ) and the drag force , which leads to the Einstein–Smoluchowski equation ...
In a system prepared as a block of ice floating in a bath of hot water, and then isolated, the ice can melt; during the melting, the system is not in thermal equilibrium; but eventually, its temperature will become uniform; the block of ice will not re-form.
At the molecular level, gas dynamics is a study of the kinetic theory of gases, often leading to the study of gas diffusion, statistical mechanics, chemical thermodynamics and non-equilibrium thermodynamics. [2] Gas dynamics is synonymous with aerodynamics when the gas field is air and the subject of study is flight.
This article inspired further work based on the twin ideas that substances are composed of indivisible particles, and that heat is a consequence of the particle motion; movement that evolves in accordance with Newton's laws. The work, known as the kinetic theory of gases, was done principally by Clausius, James Clerk Maxwell, and Ludwig Boltzmann.
The kinetic theory of gases applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions , vortical flow, relativistic speed limits, and quantum exchange interactions ) that can make their speed distribution different from the Maxwell–Boltzmann form.
According to the assumptions of the kinetic theory of ideal gases, one can consider that there are no intermolecular attractions between the molecules, or atoms, of an ideal gas. In other words, its potential energy is zero. Hence, all the energy possessed by the gas is the kinetic energy of the molecules, or atoms, of the gas.
A chemistry professor explains the science that makes salt a cheap and efficient way to lower freezing temperature.
This local equilibrium may apply only to a certain subset of particles in the system. For example, LTE is usually applied only to massive particles. In a radiating gas, the photons being emitted and absorbed by the gas do not need to be in a thermodynamic equilibrium with each other or with the massive particles of the gas for LTE to exist. In ...