enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proton - Wikipedia

    en.wikipedia.org/wiki/Proton

    A proton is a stable subatomic particle, symbol p, H +, or 1 H + with a positive electric charge of +1 e (elementary charge).Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio).

  3. Proton-to-electron mass ratio - Wikipedia

    en.wikipedia.org/wiki/Proton-to-electron_mass_ratio

    Baryonic matter consists of quarks and particles made from quarks, like protons and neutrons. Free neutrons have a half-life of 613.9 seconds. Electrons and protons appear to be stable, to the best of current knowledge. (Theories of proton decay predict that the proton has a half life on the order of at least 10 32 years. To date, there is no ...

  4. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The mass of the neutron is greater than that of the proton by 1.293 32 MeV/c 2, [25] hence the neutron's mass provides energy sufficient for the creation of the proton, electron, and anti-neutrino. In the decay process, the proton, electron, and electron anti-neutrino conserve the energy, charge, and lepton number of the neutron. [26]

  5. Subatomic particle - Wikipedia

    en.wikipedia.org/wiki/Subatomic_particle

    The negatively charged electron has a mass of about ⁠ 1 / 1836 ⁠ of that of a hydrogen atom. The remainder of the hydrogen atom's mass comes from the positively charged proton. The atomic number of an element is the number of protons in its nucleus. Neutrons are neutral particles having a mass slightly greater than that of the proton.

  6. Neutrino - Wikipedia

    en.wikipedia.org/wiki/Neutrino

    ), the resultant neutron-rich daughter nuclides rapidly undergo additional beta decays, each converting one neutron to a proton and an electron and releasing an electron antineutrino. Including these subsequent decays, the average nuclear fission releases about 200 MeV of energy, of which roughly 95.5% remains in the core as heat, and roughly 4 ...

  7. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    The masses of the proton and neutron are similar: for the proton it is 1.6726 × 10 −27 kg (938.27 MeV/c 2), while for the neutron it is 1.6749 × 10 −27 kg (939.57 MeV/c 2); the neutron is roughly 0.13% heavier. The similarity in mass can be explained roughly by the slight difference in masses of up quarks and down quarks composing the ...

  8. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    Beta decay (and electron capture): these processes are regulated by the weak force, and result from a transformation of a neutron into a proton, or a proton into a neutron. The neutron to proton transition is accompanied by the emission of an electron and an antineutrino, while proton to neutron transition (except in electron capture) causes ...

  9. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    The invariant mass of an electron is approximately 9.109 × 10 −31 kg, [80] or 5.489 × 10 −4 Da. Due to mass–energy equivalence, this corresponds to a rest energy of 0.511 MeV (8.19 × 10 −14 J). The ratio between the mass of a proton and that of an electron is about 1836.