Search results
Results from the WOW.Com Content Network
Volumetric efficiency (VE) in internal combustion engine engineering is defined as the ratio of the equivalent volume of the fresh air drawn into the cylinder during the intake stroke (if the gases were at the reference condition for density) to the volume of the cylinder itself.
The gas-generator cycle, also called open cycle, is one of the most commonly used power cycles in bipropellant liquid rocket engines. Propellant is burned in a gas generator (or "preburner") and the resulting hot gas is used to power the propellant pumps before being exhausted overboard and lost. Because of this loss, this type of engine is ...
The main advantage is fuel efficiency due to all of the propellant flowing to the main combustion chamber, which also allows for higher thrust. The staged combustion cycle is sometimes referred to as closed cycle, as opposed to the gas generator, or open cycle where a portion of propellant never reaches the main combustion chamber. The ...
Specific impulse (usually abbreviated I sp) is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust. In general, this is a ratio of the impulse, i.e. change in momentum, per mass of propellant. This is equivalent to "thrust per massflow".
For gasoline fuel, the stoichiometric air–fuel mixture is about 14.7:1 [1] i.e. for every one gram of fuel, 14.7 grams of air are required. For pure octane fuel, the oxidation reaction is: 25 O 2 + 2 C 8 H 18 → 16 CO 2 + 18 H 2 O + energy. Any mixture greater than 14.7:1 is considered a lean mixture; any less than 14.7:1 is a rich mixture ...
A gasoline engine burns a mix of gasoline and air, consisting of a range of about twelve to eighteen parts (by weight) of air to one part of fuel (by weight). A mixture with a 14.7:1 air/fuel ratio is stoichiometric, that is when burned, 100% of the fuel and the oxygen are consumed.
A typical fluid catalytic cracking unit in a petroleum refinery. Fluid catalytic cracking (FCC) is the conversion process used in petroleum refineries to convert the high-boiling point, high-molecular weight hydrocarbon fractions of petroleum (crude oils) into gasoline, alkene gases, and other petroleum products.
Traditional methanol to gasoline technologies produce diesel, gasoline or liquefied petroleum gas. [10] STG+ produces gasoline, diesel, jet fuel and aromatics, depending on the catalysts used. The STG+ technology also incorporates durene reduction into its core process, meaning that the entire fuel production process requires only two steps ...