Search results
Results from the WOW.Com Content Network
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors.
Another type of innovative neutron generator is the inertial electrostatic confinement fusion device. This neutron generator avoids using a solid target which will be sputter eroded causing metalization of insulating surfaces. Depletion of the reactant gas within the solid target is also avoided. Far greater operational lifetime is achieved.
Fast reactors of the BN series use a core running on enriched fuels including highly (80%) or medium (20%) enriched uranium or plutonium. This design produces many neutrons that escape the core area. These neutrons create additional reactions in a "blanket" of material, normally natural or depleted uranium or thorium, where new plutonium- or 233
Some reactions are only possible with fast neutrons: (n,2n) reactions produce small amounts of protactinium-231 and uranium-232 in the thorium cycle which is otherwise relatively free of highly radioactive actinide products. 9 Be + n → 2α + 2n can contribute some additional neutrons in the beryllium neutron reflector of a nuclear weapon.
A fast neutron is a free neutron with a kinetic energy level close to 1 M eV (100 T J/kg), hence a speed of 14,000 km/s or higher. They are named fast neutrons to distinguish them from lower-energy thermal neutrons, and high-energy neutrons produced in cosmic showers or accelerators. Fast neutrons are produced by nuclear processes:
Pool type sodium-cooled fast reactor (SFR) A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium.. The initials SFR in particular refer to two Generation IV reactor proposals, one based on existing liquid metal cooled reactor (LMFR) technology using mixed oxide fuel (MOX), and one based on the metal-fueled integral fast reactor.
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
Diagram Beta decay: beta particle is emitted from an atomic nucleus Compton scattering: scattering of a photon by a charged particle Neutrino-less double beta decay: If neutrinos are Majorana fermions (that is, their own antiparticle), Neutrino-less double beta decay is possible. Several experiments are searching for this. Pair production and ...