enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    Organisation of enzyme structure and lysozyme example. Binding sites in blue, catalytic site in red and peptidoglycan substrate in black. (In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction.

  3. Cysteine - Wikipedia

    en.wikipedia.org/wiki/Cysteine

    Cysteine ball and stick model spinning. Cysteine (/ ˈ s ɪ s t ɪ iː n /; [5] symbol Cys or C [6]) is a semiessential [7] proteinogenic amino acid with the formula HOOC−CH(−NH 2)−CH 2 −SH. The thiol side chain in cysteine enables the formation of disulfide bonds, and often participates in enzymatic reactions as a nucleophile.

  4. Non-proteinogenic amino acids - Wikipedia

    en.wikipedia.org/wiki/Non-proteinogenic_amino_acids

    Lysine. Technically, any organic compound with an amine (–NH 2) and a carboxylic acid (–COOH) functional group is an amino acid. The proteinogenic amino acids are a small subset of this group that possess a central carbon atom (α- or 2-) bearing an amino group, a carboxyl group, a side chain and an α-hydrogen levo conformation, with the exception of glycine, which is achiral, and proline ...

  5. Native chemical ligation - Wikipedia

    en.wikipedia.org/wiki/Native_chemical_ligation

    Theodor Wieland and coworkers had reported the S-to-N acyl shift as early as 1953, when the reaction of valine-thioester and cysteine amino acid in aqueous buffer was shown to yield the dipeptide valine-cysteine. [3] The reaction proceeded through the intermediacy of a thioester containing the sulfur of the cysteine residue.

  6. Iodoacetamide - Wikipedia

    en.wikipedia.org/wiki/Iodoacetamide

    Iodoacetamide is an irreversible inhibitor of all cysteine peptidases, with the mechanism of inhibition occurring from alkylation of the catalytic cysteine residue (see schematic). In comparison with its acid derivative, iodoacetate, iodoacetamide reacts substantially faster.

  7. Thiol - Wikipedia

    en.wikipedia.org/wiki/Thiol

    As the functional group of the amino acid cysteine, the thiol group plays a very important role in biology. When the thiol groups of two cysteine residues (as in monomers or constituent units) are brought near each other in the course of protein folding, an oxidation reaction can generate a cystine unit with a disulfide bond (−S−S−).

  8. Metallothionein - Wikipedia

    en.wikipedia.org/wiki/Metallothionein

    Cysteine residues from MTs can capture harmful oxidant radicals like the superoxide and hydroxyl radicals. [19] In this reaction, cysteine is oxidized to cystine, and the metal ions which were bound to cysteine are liberated to the media. As explained in the Expression and regulation section, this Zn can activate the synthesis of more MTs. This ...

  9. Peptide synthesis - Wikipedia

    en.wikipedia.org/wiki/Peptide_synthesis

    Cysteine has a very reactive sulfhydryl group on its side chain. A disulfide bridge is created when a sulfur atom from one Cysteine forms a single covalent bond with another sulfur atom from a second cysteine in a different part of the protein. These bridges help to stabilize proteins, especially those secreted from cells.