Search results
Results from the WOW.Com Content Network
At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).
The two most commonly used systems are the Stonyhurst and Carrington systems. They both define latitude as the angular distance from the solar equator, but differ in how they define longitude. In Stonyhurst coordinates, the longitude is fixed for an observer on Earth, and, in Carrington coordinates, the longitude is fixed for the Sun's rotation.
It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane. [4] [5] At solar noon, the zenith angle is at a minimum and is equal to latitude minus solar declination angle. This is the basis by which ancient mariners navigated the oceans. [6]
Solar time is measured by the apparent diurnal motion of the Sun. Local noon in apparent solar time is the moment when the Sun is exactly due south or north (depending on the observer's latitude and the season). A mean solar day (what we normally measure as a "day") is the average time between local solar noons ("average" since this varies ...
This is the coordinate system normally used to calculate the position of the Sun in terms of solar zenith angle and solar azimuth angle, and the two parameters can be used to depict the Sun path. [3] This calculation is useful in astronomy, navigation, surveying, meteorology, climatology, solar energy, and sundial design.
Rotation period with respect to distant stars, the sidereal rotation period (compared to Earth's mean Solar days) Synodic rotation period (mean Solar day) Apparent rotational period viewed from Earth Sun [i] 25.379995 days (Carrington rotation) 35 days (high latitude) 25 d 9 h 7 m 11.6 s 35 d ~28 days (equatorial) [2] Mercury: 58.6462 days [3 ...
[22] [26] There is a graduated ring on the lower plate which displays the relative rotation between the north-aligned top plate and the surveying sight-line on the bottom plate, and has verniers to allow precise reading of the angle. [22] [26] The latitude arc is attached perpendicular to the upper plate.
Most sun charts plot azimuth versus altitude throughout the days of the winter solstice and summer solstice, as well as a number of intervening days.Since the apparent movement of the Sun as viewed from Earth is nearly symmetrical about the solstice, plotting dates for one half of the year gives a good approximation for the rest of the year.