enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slope field - Wikipedia

    en.wikipedia.org/wiki/Slope_field

    the slope field is an array of slope marks in the phase space (in any number of dimensions depending on the number of relevant variables; for example, two in the case of a first-order linear ODE, as seen to the right). Each slope mark is centered at a point (,,, …,) and is parallel to the vector

  3. Isocline - Wikipedia

    en.wikipedia.org/wiki/Isocline

    Fig. 1: Isoclines (blue), slope field (black), and some solution curves (red) of y' = xy. The solution curves are y = C e x 2 / 2 {\displaystyle y=Ce^{x^{2}/2}} . Given a family of curves , assumed to be differentiable , an isocline for that family is formed by the set of points at which some member of the family attains a given slope .

  4. Autonomous system (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Autonomous_system...

    For non-linear autonomous ODEs it is possible under some conditions to develop solutions of finite duration, [8] meaning here that from its own dynamics, the system will reach the value zero at an ending time and stay there in zero forever after.

  5. Integral curve - Wikipedia

    en.wikipedia.org/wiki/Integral_curve

    Let M be a Banach manifold of class C r with r ≥ 2. As usual, TM denotes the tangent bundle of M with its natural projection π M : TM → M given by : (,). A vector field on M is a cross-section of the tangent bundle TM, i.e. an assignment to every point of the manifold M of a tangent vector to M at that point.

  6. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    By doing the above step, we have found the slope of the line that is tangent to the solution curve at the point (,). Recall that the slope is defined as the change in y {\displaystyle y} divided by the change in t {\displaystyle t} , or Δ y Δ t {\textstyle {\frac {\Delta y}{\Delta t}}} .

  7. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    For a first-order PDE, the method of characteristics discovers so called characteristic curves along which the PDE becomes an ODE. [1] [2] Once the ODE is found, it can be solved along the characteristic curves and transformed into a solution for the original PDE.

  8. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:

  9. System of differential equations - Wikipedia

    en.wikipedia.org/wiki/System_of_differential...

    A differential system is a means of studying a system of partial differential equations using geometric ideas such as differential forms and vector fields. For example, the compatibility conditions of an overdetermined system of differential equations can be succinctly stated in terms of differential forms (i.e., for a form to be exact, it ...