Search results
Results from the WOW.Com Content Network
The Pólya enumeration theorem can be used to calculate the number of graphs up to isomorphism with a fixed number of vertices, or the generating function of these graphs according to the number of edges they have. For the latter purpose, we can say that a black or present edge has weight 1, while an absent or white edge has weight 0.
[4]: 23–24 The specific topics treated bear witness to the special interests of Pólya (Descartes' rule of signs, Pólya's enumeration theorem), Szegö (polynomials, trigonometric polynomials, and his own work in orthogonal polynomials) and sometimes both (the zeros of polynomials and analytic functions, complex analysis in general).
Pólya’s theorem can be used to construct an example of two random variables whose characteristic functions coincide over a finite interval but are different elsewhere. Pólya’s theorem. If is a real-valued, even, continuous function which satisfies the conditions =,
According to the De Finetti's theorem, there must be a unique prior distribution such that the joint distribution of observing the sequence is a Bayesian mixture of the Bernoulli probabilities. It can be shown that this prior distribution is a beta distribution with parameters β ( ⋅ ; α , γ ) {\displaystyle \beta \left(\cdot ;\,\alpha ...
The monodromy theorem gives a sufficient condition for the existence of a direct analytic continuation (i.e., an extension of an analytic function to an analytic function on a bigger set). Suppose D ⊂ C {\displaystyle D\subset \mathbb {C} } is an open set and f an analytic function on D .
Burnside's lemma can compute the number of rotationally distinct colourings of the faces of a cube using three colours.. Let X be the set of 3 6 possible face color combinations that can be applied to a fixed cube, and let the rotation group G of the cube act on X by moving the colored faces: two colorings in X belong to the same orbit precisely when one is a rotation of the other.
Russian inventor Genrich Altshuller developed an elaborate set of methods for problem solving known as TRIZ, which in many aspects reproduces or parallels Pólya's work. How to Solve it by Computer is a computer science book by R. G. Dromey. [29] It was inspired by Pólya's work.
A theorem in the Flajolet–Sedgewick theory of symbolic combinatorics treats the enumeration problem of labelled and unlabelled combinatorial classes by means of the creation of symbolic operators that make it possible to translate equations involving combinatorial structures directly (and automatically) into equations in the generating functions of these structures.