Search results
Results from the WOW.Com Content Network
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
Suppose we have a continuous differential equation ′ = (,), =, and we wish to compute an approximation of the true solution () at discrete time steps ,, …,.For simplicity, assume the time steps are equally spaced:
Let us now apply Euler's method again with a different step size to generate a second approximation to y(t n+1). We get a second solution, which we label with a (). Take the new step size to be one half of the original step size, and apply two steps of Euler's method. This second solution is presumably more accurate.
The next, "corrector" step refines the initial approximation by using the predicted value of the function and another method to interpolate that unknown function's value at the same subsequent point. Predictor–corrector methods for solving ODEs
"New high-order Runge-Kutta formulas with step size control for systems of first and second-order differential equations". Zeitschrift für Angewandte Mathematik und Mechanik . 44 (S1): T17 – T29 .
Suppose that we want to solve the differential equation ′ = (,). The trapezoidal rule is given by the formula + = + ((,) + (+, +)), where = + is the step size. [1]This is an implicit method: the value + appears on both sides of the equation, and to actually calculate it, we have to solve an equation which will usually be nonlinear.
Given a prime number q and prime power q m with positive integers m and d such that d ≤ q m − 1, a primitive narrow-sense BCH code over the finite field (or Galois field) GF(q) with code length n = q m − 1 and distance at least d is constructed by the following method.
Consider a numerical approximation , where is a parameter characterizing the approximation, such as the step size in a finite difference scheme or the diameter of the cells in a finite element method.