enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SMA* - Wikipedia

    en.wikipedia.org/wiki/SMA*

    SMA* or Simplified Memory Bounded A* is a shortest path algorithm based on the A* algorithm. The main advantage of SMA* is that it uses a bounded memory, while the A* algorithm might need exponential memory. All other characteristics of SMA* are inherited from A*.

  3. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where ⁠ = ⁠ for all x. [ 12 ] [ 13 ] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.

  4. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    [2] For the following definitions, two examples will be used. The first is the problem of character recognition given an array of bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as negative.

  5. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...

  6. Memory-bound function - Wikipedia

    en.wikipedia.org/wiki/Memory-bound_function

    Memory bound refers to a situation in which the time to complete a given computational problem is decided primarily by the amount of free memory required to hold the working data. This is in contrast to algorithms that are compute-bound , where the number of elementary computation steps is the deciding factor.

  7. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    Iterative-deepening-A* works as follows: at each iteration, perform a depth-first search, cutting off a branch when its total cost () = + exceeds a given threshold.This threshold starts at the estimate of the cost at the initial state, and increases for each iteration of the algorithm.

  8. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    The edges traversed in this search form a Trémaux tree, a structure with important applications in graph theory. Performing the same search without remembering previously visited nodes results in visiting nodes in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B, D, F, E cycle and never reaching C or G.

  9. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Animated example of a depth-first search For the following graph: a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following ...